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INTRODUCTION 
 

The landscape of ageing research and interventions 

targeting age-related diseases has undergone significant 

advancement in the past decade [1, 2]. Since  

the first Aging Research and Drug Discovery  

(ARDD) meeting in 2013, the field has evolved  

into a multidisciplinary arena, attracting substantial 

funding, spawning numerous startups, and yielding 

groundbreaking discoveries. It now encompasses 

contributions from a broad spectrum of professionals, 

including biologists, physicians, data scientists,  

and entrepreneurs, bridging the public and private 

sectors. This dynamic progression has been greatly 

accelerated by the advent of cutting-edge technologies, 

such as artificial intelligence (AI), comprehensive 

omics analyses, and innovative ageing clocks  

(Figure 1). These tools have catalysed advancements 

in our understanding of ageing processes and  

the development of safe and effective interventions  

to combat ageing and chronic illness, leading to 

healthspan extension.  

 

This evolving paradigm is characterized by the 

synergistic integration of AI and big data analytics,  

which have emerged as transformative forces in  

the identification, characterization, and predictive  

analysis of ageing biomarkers [3]. AI-driven 

biomarker discovery is increasingly recognized as  

a cornerstone for advancing personalized medicine 

and improving healthcare outcomes. Yet, the journey 

from biomarker discovery to clinical translation 

encompasses a myriad of challenges, including 

rigorous validation processes and the harmonization of 

regulatory standards [4–6]. Overcoming these obstacles 

necessitates continued investment, collaboration, and 

innovation, underscoring the pivotal role of biomarkers 

in the nexus of ageing research, drug discovery, and 

clinical applications. 

Within this context, longevity biotechnology emerges 

as an interdisciplinary bridge that connects AI, 

biomarkers discovery and deployment, geroscience, 

and clinical applications, aiming to redefine healthcare 

paradigms towards achieving healthy longevity. This 

review, compiled by the ARDD speakers following  

the 2023 ARDD event, aims to encapsulate the latest 

strides in longevity biotechnology. It highlights the 

convergence of AI-driven approaches with traditional 

research methodologies, underscoring the potential of 

this union in addressing the complex challenges posed 

by ageing and age-related diseases. By delving into 

AI-empowered biomarker development, mechanisms 

of ageing, gerotherapeutics, and the landscape of 

clinical trials and interventions, we endeavour to 

provide a comprehensive perspective on state of the  

art in longevity science and its implications for future 

healthcare strategies. 

 

AI in ageing research 
 

The emergence of longevity biotechnology as a 

standalone industry has led to the acceleration of the 

convergence of AI and ageing research [3], which led  

to notable advancements in longevity science, with AI 

playing an increasing role in biomarker identification, 

drug discovery, and clinical practice. The link between 

longevity and AI is expected to become even stronger, 

as AI is helping to understand the wider determinants of 

health, including how the environment influences gene 

expression, yielding new insights on how to increase the 

human healthy lifespan [7]. 

 

AI-driven biomarker identification 

 

The fusion of AI with biomarker research has 

markedly revolutionized the way biomarkers are 

identified and validated in the field of ageing. Machine 

learning algorithms, deep learning methods, and big 

ABSTRACT 
 

The recent unprecedented progress in ageing research and drug discovery brings together fundamental 
research and clinical applications to advance the goal of promoting healthy longevity in the human population. 
We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest 
developments in healthspan biotechnology, with a particular emphasis on artificial intelligence (AI), biomarkers 
and clocks, geroscience, and clinical trials and interventions for healthy longevity. Moreover, we provide an 
overview of academic research and the biotech industry focused on targeting ageing as the root of age-related 
diseases to combat multimorbidity and extend healthspan. We propose that the integration of generative AI, 
cutting-edge biological technology, and longevity medicine is essential for extending the productive and healthy 
human lifespan. 
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data analytics have facilitated the discovery of novel 

biomarkers of ageing crucial for disease diagnosis, 

prognosis, and predicting treatment outcomes [8, 9]. 

For example, deep learning algorithms applied to 

cellular images across multiple tissues identified 

nuclear morphology as a new universal senescence 

marker [10]. Yet, it is often challenging to use singular 

indicators as ageing biomarkers. Using panels or 

complex biomarkers that combine data from multiple 

‘omic’ technologies is recommended [11]. It is 

especially important to use explainable AI to create 

models that can predict chronological age from non-

invasive measurements. In the future, the integration 

of AI with emerging technologies, such as single- 

cell sequencing and spatial transcriptomics for the 

biomarker discovery for complex diseases with 

multifactorial etiology will be at the forefront of 

ageing research. Notably, it is becoming increasingly 

important to identify not only biomarkers that predict 

the onset of age-related disorders and diseases, but 

also therapeutic biomarkers that change in response  

to gerotherapeutic interventions that delay, prevent, 

alleviate, or treat age-related disorders and diseases 

and that may extend healthspan [5, 12]. 

AI in drug discovery and longevity science 

 

One of the most prominent applications of AI in the 

ageing field is drug discovery, where AI techniques 

are used to identify and design new compounds [13, 

14]. Pharmaceuticals have been identified that target 

some of the hallmarks of ageing, which could be 

utilized to address age-related multimorbidities. For 

example, several recent findings showed machine 

learning or deep neural networks are able to assist in 

the discovery of senolytic compounds in preclinical 

models [15, 16], first-in-class preclinical drug 

candidates against Huntington’s disease [17], and 

novel mTOR inhibitors and repurposing hypertension 

drug rilmenidine for extending C. elegans lifespan [18, 

19]. This approach has significantly accelerated the 

process of finding anti-ageing therapeutic solutions. 

 

The usage of AI extends beyond drug discovery. 

Machine learning techniques have been employed to 

decode the genetic and epigenetic factors associated 

with longevity, such as those related to physical fitness 

and specific genes like ACTN3 [20]. This provides a 

crucial example of how AI, particularly deep learning 

 

 
 

Figure 1. Timeline of longevity biotechnology. Key breakthroughs in the AI, biomarkers and clocks, geroscience, and clinical trials and 
applications in ageing and longevity fields since 2013. 
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and machine learning, accelerate longevity science  

by uncovering novel biomarkers and elucidating the 

complex genetic and epigenetic underpinnings of 

ageing. Furthermore, the application of hybrid quantum-

classical machine learning techniques reveals new 

perspectives on biological age and its determinants  

and opens new avenues for the development of 

gerontechnology [21]. 
 

Biomarkers and ageing clocks 
 

Biomarkers and clocks play a crucial role in 

understanding age and age-related disease progression, 

predicting outcomes, and optimizing treatment strategies. 

Recent contributions from the Aging Biomarkers 

Consortium and the Biomarkers of Aging Consortium 

provided a comprehensive summary of the current state of 

biomarkers across cellular, organ, and organismal levels 

of ageing. These groups have also proposed a refined 

framework for the terminology and characterization of 

ageing biomarkers, offering valuable insights and data  

for the field [5, 12]. Furthermore, updates on the 

hallmarks of ageing delivered extensive information and 

complex biological datasets, underscoring the necessity  

of integrating AI with traditional biomarker discovery 

approaches to derive meaningful insights [1].  

 

Biomarker validation and clinical translation 

 

The biomarkers of ageing need to be widely validated 

before being incorporated into clinical practice [4]. The 

ageing process is highly variable across tissues and 

organs [22, 23]. Moreover, the ageing process varies 

significantly among individuals, with stochastic variation 

alone can explain a significant portion of ageing 

dynamics. The accuracy of predictive biomarkers may 

plateau as stochasticity increases [24], highlighting the 

variability in biological ageing among individuals and  

the value of measuring this difference. Validation is  

a multistep process that defines the characteristics of 

biomarkers, including their reliability, accuracy, and 

ability to predict relevant outcomes [4, 25]. This process 

requires expertise in various areas, such as the biological 

mechanisms of ageing, the design and construction of 

composite biomarkers, and the validation of biomarkers 

across diverse population samples. Collaboration between 

basic scientists and clinical investigators is essential for 

successfully navigating this process. 

 

Initiatives such as Biolearn, methylCIPHER,  

Estimage, and Clockbase have emerged to facilitate  

the development, validation, and comparison of  

ageing biomarkers [26–29]. These platforms provide 
standardized datasets and evaluation metrics, enabling 

researchers to benchmark their biomarkers against 

existing ones and identify areas for improvement. Such 

collaborative efforts are crucial for accelerating the 

translation of ageing biomarkers into clinical practice. 

To enhance rigor in the validation process, guidelines 

for standardization and harmonization of biomarkers 

across populations with unique characteristics are 

needed [4]. Recommendations on metrics for reporting 

predictive performance should also be established. 

Systematic validation can accelerate the clinical 

translation of ageing biomarkers and their use in 

gerotherapeutic clinical trials. 

 

Ageing clocks and AI 

 

Ageing clocks are a specific type of biomarker designed 

to predict biological age, typically through computational 

models. These clocks often use a combination of 

biomarkers, integrating them through machine learning 

techniques to estimate the overall ageing rate and 

biological age of an individual. It has been a decade 

since the first-generation DNA methylation clocks were 

created [30]. Since then, many biological clocks have 

been developed, from clocks based on molecular 

signatures such as DNA methylation, transcriptome, 

lipids and glycans to physiological clocks using facial, 

fundus, and tongue images [31–35].  

 

One of the limitations of most existing clocks is that 

often reflect changes in blood cell populations rather 

than intrinsic ageing. Removing CpG sites linked to T 

cell differentiation could be a way to measure intrinsic 

ageing more accurately [36]. Another limitation of  

most existing clocks is their lack of information on 

causality, which means that while ageing clocks can 

show correlations with ageing, they are not able to 

pinpoint which biological changes are causing ageing. 

DamAge and AdaptAge-clocks are novel epigenetic 

clocks that are based on causal analysis [37]. These 

clocks might prove to be more useful for tracking short-

term interventions making them suitable and applicable 

for assessing nuanced effects on geroprotective and 

rejuvenative interventions.  

 

Beyond the DNA methylation clocks, blood-

measurement-based biological age predictors have been 

developed since 2016, when a deep neural network 

(DNN) approach was introduced to predict age from 

blood biochemistry data [3, 38]. Since then, several 

studies have built upon this concept, refining and 

expanding the use of blood parameters to predict 

biological age and health outcomes. For example, the 

“block clock” employs an array of blood parameters, 

such as complete blood count (CBC), and other 

parameters measured with a scale and glucose meter, 
demonstrating its power to forecast health and survival 

outcomes in mice [39]. Similarly, a new OMICmAge 

integrates multi-omics data, including proteomics, 
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metabolomics, clinical information, and DNA 

methylation, resulting in composite metric, shows 

promising associations with disease, improved hazard 

ratios, and higher accuracy in predicting 5-year and  

10-year survival rates compared to single-omic clocks 

[40]. However, despite the great potential of biological 

clocks supported by AI, the lack of uniform data 

exchange protocols between laboratories and units 

conducting development research makes it difficult  

to create a reliable clinical tool. Many solutions are  

still based on reading text documents by an AI 

algorithm, which carries the risk of incorrect data in the 

analysis. 

 

In sum, there is an increasing demand in the field  

for the development of more sophisticated ageing 

biomarkers and clocks. These should not only predict 

ageing and associated risks but also elucidate the 

underlying mechanisms and causal relationships. 

Furthermore, employing AI to integrate multi-omics 

data for advanced ageing clocks presents a promising 

strategy to advance ageing research and improve 

healthcare outcomes. 
 

Mechanisms of ageing, drug discovery and 

gerotechnology 
 

In recent years, our understanding of the mechanisms 

of ageing has significantly advanced. Of note, the 

proposition of twelve hallmarks of ageing includes 

primary hallmarks which reflect on the molecular-level 

damages; antagonistic hallmarks which represent the 

organelle and cellular response to the damage, and 

integrative hallmarks which reflect alternations at 

systemic levels [1]. The shift from the pursuit of  

single unified theories of ageing towards explaining 

ageing as a complex combination of molecular events 

and cellular responses has been useful towards the 

development of novel interventions and treatments 

targeting age-related diseases.  

 

Primary hallmarks of ageing and potential 

applications 

 

The primary hallmarks of ageing include genome 

instability (DNA damage and repair, and genetic 

mutations), telomere damage and attrition, epigenetic 

changes to the genetic code and histones that regulate 

DNA accessibility, and autophagy/proteostasis that 

ameliorate damage to proteins and organelles [1]. 

These hallmarks comprise the consequences of normal 

metabolism and energetics and how well cells respond 

to that unavoidable stress. The primary hallmarks are 

dictated by both genetic and environmental factors  

and thereby are arguably the most heterogeneous and 

unavoidable consequences of ageing. 

Genome integrity 

Recent advancements have further delineated the 

mechanisms associated with the hallmarks of ageing. 

Among the primary hallmarks, genome instability, 

predominantly induced by endogenous DNA damage 

driven by normal metabolism, the accumulation of 

genetic mutations and the activity of transposable 

elements, along with telomeric DNA damage and 

attrition, the latter being the progressive shortening of 

telomeres at the ends of chromosomes during cell 

division, plays a key role in the progression of ageing 

and its associated diseases [1, 41]. Studies using 

progeroid mouse models, such as Ercc1 mutant, a model 

of a human progeroid syndrome, have illustrated how 

particular gene mutations in DNA repair genes can 

accelerate ageing processes, initiate most of the other 

hallmarks of ageing, and compromise various organ 

systems, illustrating the interconnectedness of hallmarks 

of ageing [42]. The recent discovery of the DREAM 

complex as a master regulator of DNA repair gene 

expression provides a potential pharmacological target 

for boosting genome integrity thus alleviating a causal 

mechanism that drives the ageing process [43]. 

 
Epigenetic alternations 

The alteration of epigenetic information with age 

represents another pivotal mechanism influencing 

ageing [1]. Innovations in partial reprogramming, 

using Yamanaka factors and other agents, suggest that 

the reversal of the epigenetic landscape to a more 

youthful state may counteract ageing effects [44–48]. 

This hypothesis is supported by findings that proper 

maintenance of epigenetic marks is essential for 

preserving cell identity and mitigating ageing and 

cancer-related changes in the epigenome [49, 50]. 

Furthermore, recent research demonstrates that age-

associated decline in heterochromatin levels contributes 

to genomic instability and diminished regenerative 

capacity, suggesting that interventions aimed at 

rejuvenating aged cells could be beneficial [51].  

 
Given the therapeutic potential of partial reprogramming, 

it emerges as a highly promising strategy for combating 

the effects of ageing and its related diseases. Research 

targeting specific cell types, such as retinal ganglion 

cells with reprogramming techniques, reveals the 

potential to restore cellular function lost with age [52]. 

Furthermore, the development and application of 

mRNA-based reprogramming for skin rejuvenation 

exemplifies the innovative approaches being pursued to 

reverse age-related cellular changes, offering the non-

invasive and transformative potential for anti-ageing 

interventions [53]. However, safety concerns of partial 

reprogramming, such as how to protect cell type identity 

during the reprogramming process or predisposition  

to cancer may hinder its therapeutic applications [54]. 
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Autophagy and proteostasis 

Macroautophagy (we here refer to it as “autophagy”)  

is a critical cellular process involving the turnover  

and recycling of organelles and proteins [55]. It  

plays a pivotal role in maintaining cellular homeostasis 

and combating the deleterious effects of protein  

and organelle damage that occurs during ageing. 

Stimulation of autophagy is sufficient to decelerate 

age-related pathology and extend lifespan in diverse 

animal models [1, 56]. Of note, a brief treatment of 

rapamycin in early adulthood induces sustained 

autophagy activation and thereby attenuates age-

related gut pathology and systemic inflammation 

markers in mice, shedding light for further testing  

in clinical trials [57]. Moreover, the integration of  

AI has yielded promising drug candidates targeting 

specific autophagic processes, such as mitochondrial 

autophagy (mitophagy), showcasing positive outcomes 

in Alzheimer’s disease preclinical models [58].  

 

Parallel to autophagy, proteostasis declines with age, 

contributing to a range of degenerative diseases 

including Alzheimer’s [59]. Intervention strategies that 

modulate protein synthesis, bolster chaperones like  

heat shock proteins (HSPs), and enhance proteasomal 

activities decrease toxic protein aggregates and alleviate 

symptoms of degenerative conditions, illustrating the 

critical role of proteostasis in maintaining cellular 

integrity and function [59]. These insights into 

autophagy and proteostasis deepen our understanding  

of cellular mechanisms underlying ageing and pave  

the way for novel therapeutic approaches to combat 

age-related diseases. 

 

Antagonistic hallmarks and pathways to clinical 

translation 

 

Antagonistic hallmarks of ageing, including deregulated 

nutrient sensing, mitochondrial dysfunction, and cellular 

senescence, play pivotal roles in the ageing process  

and the development of age-related diseases [1].  

These mechanisms comprise the organelle and cellular 

responses to the primary hallmarks of ageing and stress, 

and are central to the current research and clinical 

studies in geroscience, highlighting their significance and 

potential translatability into therapeutic interventions 

[60–62].  

 

Nutrient sensing 

Research into the deregulation of nutrient-sensing 

pathways, such as insulin/IGF-1, mTOR, and AMPK, 

reveals a profound impact on the ageing process and 

associated diseases. These pathways, when disrupted, 
contribute significantly to the ageing phenotype, 

presenting targeted opportunities for intervention. 

Interventions in this area focus on modulating the 

activity of these pathways to decelerate ageing and 

mitigate age-related conditions [63–65]. For example, 

subtly adjusting mTOR activity maintains muscle 

strength without promoting excessive growth, indicating 

a delicate balance between growth and ageing. Similarly, 

modulating the activity of the AMPK complex may 

foster metabolic health and support healthy ageing [66].   

 

Nutrient-sensing pathways are well connected with 

other hallmarks of ageing. Dietary interventions like 

intermittent fasting and Fasting Mimicking Diet (FMD) 

have been explored for their potential to slow down  

the ageing process and prevent the onset of age- 

related diseases [67]. Notably, circadian alignment can 

enhance the effect of calorie restriction on lifespan 

extension in male mice, underscoring the importance of 

considering timing when optimizing dosing regimens 

of geroprotectors [68]. Furthermore, pharmacological 

reagents like metformin, and rapamycin, alongside 

natural compounds, such as spermidine, alpha-

ketobutyrate, alpha-ketoglutarate and taurine, or their 

synergistic combinations, have been identified for 

targeting these nutrient-sensing mechanisms to mediate 

multiple hallmarks of ageing [64, 69–75]. Such 

interventions have the potential to alter multiple  

age-related hallmarks, ultimately contributing to the 

extension of healthy lifespan in preclinical models and 

potentially in humans as well.  

 

Mitochondrial dysfunction 

Mitochondrial dysfunction, which is closely associated 

with the deregulation of nutrient-sensing pathways,  

is increasingly recognized as a cornerstone of ageing 

and its associated illness. A decline in mitochondrial 

function and a concomitant decrease in NAD+ levels 

are closely linked with ageing process [76]. Reducing 

mitochondrial protein folding stress in the dentate 

gyrus improves neurogenesis and cognitive function  

in old mice [77]. Therapeutic approaches targeting 

mitochondrial dysfunction aim to restore or enhance 

mitochondrial health and energetic efficiency. Research 

findings underline the significance of CD38 in 

regulating NAD levels and the role of NAD levels  

in stem cell fate, suggesting their beneficial impact 

during ageing processes [78]. Trigonelline is a natural, 

bioactive pyridine alkaloid that is a precursor of 

NAD+ and restores mitochondrial function muscle  

in the muscle of C. elegans and mice [79]. Research 

suggests that deficiency in cardiolipin, a phospholipid 

which is exclusively located in mitochondria, increases 

fatty acid oxidation in glycolytic muscle and accelerates 

muscle ageing. Furthermore, interventions targeting 

the mitochondrial matrix, such as the inhibition of 
manganese-induced coenzyme Q, which regulates  

ATP and ROS production, hold promise [80]. These 

findings underscore the importance of maintaining 
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mitochondrial function and integrity for healthy ageing 

and disease prevention and indicate that natural 

compound supplementation can be a potential strategy 

for slowing down muscle ageing. 

 

Cellular senescence 

Senescent cells play a significant role in the 

physiological decline associated with ageing, making 

them pivotal targets for anti-ageing interventions [1, 

81]. Current research efforts focus on understanding 

the triggers and consequences of cellular senescence, 

pinpointing the location of these cells and the 

communication with neighbouring cells, and uncovering 

the connection with other hallmarks of ageing [82, 83]. 

This comprehensive understanding aims to provide 

foundational knowledge for the development of 

therapeutics that help alleviate age-related changes 

that drive vulnerability to chronic diseases. 

 

The therapeutic landscape in this domain is notably 

enriched by the development of senolytics and 

senomorphics, which are meticulously crafted to 

selectively eliminate senescent cells or suppress their 

deleterious pro-inflammatory secretions, respectively. 

These innovative approaches have demonstrated 

promise in mitigating age-associated pathologies and 

promoting healthspan [83]. Currently, senotherapeutics 

include repurposing established pharmaceuticals (many 

from oncology), such as dasatinib and quercetin, 

delving into natural compounds like fisetin, and 

pioneering new treatments involving extracellular 

vesicles (EVs), vaccines, and CAR-T therapies [83–

86]. It is possible to rejuvenate senescent cells using 

partial reprogramming techniques, so the senescence 

state can be reversed [87]. These diverse approaches 

enhance the likelihood of tackling cellular senescence 

safely and effectively. Moreover, the “hit-and-run” 

approach to targeting senescent cells selectively  

aligns well with the current timelines and regulatory 

standards of clinical trials, providing an innovative 

bridge between the fields of oncology and longevity 

medicine [83].  

 

In sum, the categorization of antagonistic hallmarks 

into deregulated nutrient sensing, mitochondrial 

dysfunction, and cellular senescence provides a 

structured framework for understanding and targeting 

the ageing process. Research findings in each category 

inform the development of targeted interventions, 

illustrating the promising trajectory from scientific 

inquiry to clinical application in the field of 

geroscience. Notably, the majority of clinical trials 

testing gerotherapeutic interventions currently under-
way target the antagonistic hallmarks of ageing rather 

than the upstream primary hallmarks of ageing or the 

downstream integrative hallmarks [61]. 

Integrative hallmarks of ageing and therapeutic 

strategies 

 

Chronic inflammation 

Chronic inflammation and inflammaging are closely 

associated with functional decline and systemic ageing, 

yet their exact underlying sources and consequences 

remain to be fully elucidated [1, 88]. Notably, 

inflammation is often linked with other ageing hallmarks 

[1]. For example, recent research reveals that ageing 

leads to a decline in glycolysis and mitochondrial 

oxidative phosphorylation in myeloid cells, undermining 

immune cell functions and exacerbating inflammation 

[89]. Moreover, the response to infection is negatively 

impacted by the presence of senescent cells, which in 

turn promote further senescence when infected by 

viruses. Interestingly, long-lived species such as bats 

demonstrate remarkable immune responses to infections 

and viral containment, serving as an extraordinary model 

for unravelling the complexities of inflammation in the 

ageing process [90, 91]. 

 

Given the intricate relationship between chronic inflam-

mation, age-related immune dysfunction (inflammaging) 

and immune-related diseases, the development of 

targeted interventions and treatments to mediate immune 

function is appealing. Novel strategies, such as inhibitors 

of key inflammation mediators like NLRP3, peptide-

based therapeutics inspired by natural antimicrobial 

peptides, and immunotherapies for removing senescent or 

exhausted immune cells and enhancing immune function 

in ageing are under exploration [92]. AI-powered 

diagnostics and therapeutic solutions aimed at reversing 

gut inflammation and promoting gut health in ageing are 

also being developed [93]. To assess immune function, 

the immune longevity score (ILS) has been developed  

as a metric for evaluating the extensive functionality of 

the immune system, potentially serving as a novel ageing 

clock.  

 

Microbiome, intercellular communication and stem 

cell activity 

The gut microbiome has emerged as a critical factor 

influencing host metabolism, behaviour, and ageing 

[94]. Fecal microbiota transplantation (FMT) from 

young to old animals is sufficient to extend lifespan in 

killifish and reverse age-related differences in both 

peripheral and brain immunity in mice, highlighting the 

significant role of the microbiome in mediating host 

health and ageing [95, 96]. Healthy gut microbiota can 

lead to a less hydrophobic bile acid pool, which benefits 

liver health, pinpointing the function microbiome of the 

gut-liver axis in immune and functional ageing [97]. 
Furthermore, the translocation of Enterobacteriaceae 

has been observed to reverse premature ageing in 

SIRT6 knockout mice, suggesting the potential of 
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microbiome replacement or modulation in anti-ageing 

strategies [98]. 

 

Recently, the alternations of extracellular matrix (ECM) 

have emerged as a driver of ageing [99]. For example, 

the remodelling of collagen, the most abundant protein 

in ECM, is required for longevity in C. elegans, 

suggesting that ECM homeostasis represents a novel 

mechanism for healthy ageing [100]. Aging is associated 

with defects in cell turnover and tissue renewal, and 

reductions in stem cell activity and number, all of  

which alter with age. These processes are intricately 

modulated by the “niche” or the local extracellular 

matrix (ECM) surrounding the cells [101].  

 

Recent research reveals that diapause, a natural 

phenomenon that happens in many species, including C. 

elegans, certain insects, and killifish, can be a powerful 

model to investigate stem cell, rejuvenation and ageing, 

underscoring the interconnections between different 

hallmarks of ageing [102]. 

 

Other emerging technologies for gerotherapeutics 

 

In the evolving landscape of gerotherapeutics, diverse 

findings and emerging technologies are reshaping the 

future of ageing interventions. Of note, the G-alpha 

protein, Gαq EGL-30, plays a crucial role in enhancing 

memory and overall healthspan in a conserved manner 

from C. elegans to mice, implying the potential for 

unexpected targeted therapies aimed at preserving 

cognitive function in ageing populations [103]. 

Similarly, newly developed enzyme-based therapies are 

targeting age-related macular degeneration, providing 

hope for individuals at risk of vision loss due to ageing 

[104]. Cryopreservation is advancing as a method for 

preserving cells and tissues for regenerative medicine 

applications, yet it remains under development [105]. 

Furthermore, novel techniques such as AI, microfluidic 

systems, and robotic-assisted high-throughput screening 

methods enable unbiased drug screening and direct 

measurement of lifespan and healthspan parameters in 

whole animals, significantly accelerating the study and 

testing of interventions for ageing [106–108].  

 

Healthy ageing and longevity medicine 

 
Lifestyle interventions, supplements and drugs for 

healthy ageing 

 

In the evolving landscape of healthy ageing,  

clinical interventions rooted in exercise, diet, and 

pharmaceuticals are pivotal [61]. Accumulating evidence 
suggests that exercise operates beyond mere fitness  

and acts as a biological modifier by increasing 

circulating IL-6 levels to regulate inflammation, glucose 

homeostasis and lipid metabolism [109, 110], 

showcasing that exercise is not just a physical enhancer 

but also a potential biochemical modifier beneficial in 

countering the effects of ageing. Dietary approaches, 

such as calorie restriction, intermittent fasting, and 

fasting-mimicking diets (FMDs), have been shown to 

offer profound health benefits. In clinical settings, these 

diet strategies have led to notable improvements in 

patients with chronic conditions such as diabetes and 

hypertension [63, 111]. 

 

The integration of pharmaceuticals further broadens  

the anti-ageing intervention spectrum. Studies on 

natural compounds such as NAD+ precursors, alpha-

ketobutyrate and urolithin-A showed improvements  

in mitochondrial function morphology [61, 72, 112]. 

The repurposing of drugs like rapamycin and other 

mTOR inhibitors, along with natural compounds like 

spermidine, can enhance autophagy and improve 

immune function and vaccine responses [113, 114], 

suggesting their potential to prevent age-related declines 

in the immune system. Similarly, combinations such  

as dasatinib and quercetin show improvements in 

reduced senescence marks and immune function among 

aged populations [83], highlighting the potential of 

pharmacological agents in extending healthspan.  

 

These detailed insights into the multifaceted  

approaches encompassing exercise, diet, and pharma-

ceutical interventions reflect the comprehensive nature 

of interventions targeting ageing. They represent a 

holistic view that healthspan extension is achievable 

through targeted, evidence-based strategies grounded in 

rigorous clinical research and personalised healthcare 

paradigms. 

 

Transition from sick care to health-oriented 

longevity medicine 
 

The emergence of longevity medicine, a personalised 

preventive medicine powered by deep biomarkers  

of ageing and longevity, is a paradigm shift from 

traditional, sickness-oriented healthcare towards a  

more proactive, AI-driven approach [115]. Highlighting 

the individualisation of patient care, this approach 

integrates data collection and analysis, from cellular 

biomarkers to advanced diagnostic techniques, to  

pave the road for more effective and personalised 

interventions [116]. Clinics specialising in longevity 

medicine are now adopting this data-driven approach, 

establishing longevity medicine protocols and 

standardized criteria, as well as laying the groundwork 

for broader accessibility and implementation of 
longevity interventions in clinical settings worldwide 

(Figure 2). New commercial platforms leverage the 

integration of blood biomarkers, DNA, physiological 
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markers, health care records and user-generated data  

to optimize personal health and healthy longevity 

strategies [117].  

 

The interrelation between longevity and cancer research 

is considerable, anchored in the shared hallmarks and 

 

 
 

Figure 2. Framework of personalized, data-driven 
longevity medicine. 

biological processes between ageing and tumorigenesis 

[118]. Applying geroscience approaches to cancer and 

ageing can improve decision-making in oncology, 

particularly for patients who are not typically included in 

clinical trials due to age [116]. The cross-section between 

treatments for chronic diseases and ageing research sets 

the stage for dual-purpose drug discovery [119, 120], 

meaning to find drugs that not only treat individual age-

related diseases but also target one or multiple hallmarks 

of ageing, addressing pathological aspects of ageing. For 

instance, the risk of cancer increases approximately 40 

times from the age of 20 to the age of 60, showing that 

age is the major risk driver, but prevention and early 

detection can significantly lower its abundance in society 

before dual-purpose drugs become abundant. To achieve 

that, the transition from sickness-oriented to health-

oriented medicine is crucial and will require the inclusion 

of healthy longevity medicine in medical education and 

advanced training for physicians, enriched by the current 

scientific advancements in ageing research.  

 

Ongoing challenges and future direction 
 

Since 2019, the number of individuals over the age of  

65 has surpassed those under 5, marking a significant 

demographic shift towards an ageing population 

(https://ourworldindata.org/age-structure). The majority of 

the elderly will have more than chronic disease associated 

with ageing, illustrating that curing a single age-related 

disease, while valuable, will not substantially change the 

health status of our global population [121, 122]. This 

transformation underscores the need for a comprehensive 

approach to extend healthspan and maintain workforce 

participation in older adults (https://www.un.org/en/ 

global-issues/ageing). The urgency for systemic reforms 

spanning healthcare, policies, and societal norms is 

critical to alleviating the burdens posed by an ageing 

society. Advanced understanding of genetic, epigenetic, 

and environmental factors becomes increasingly vital to 

develop targeted health interventions for people across 

their life course especially in individuals over 50. There is 

a growing recognition of the importance of factoring in 

wider environmental, behavioral, and social determinants 

of health, encapsulated by the ‘exposome’, that have 

profound effects on the human health trajectory and 

overall resilience as people age [123]. 

 

The economic ramifications highlight ageing as a 

profound societal challenge, emphasizing that targeting 

fundamental ageing process is predicted to yield 

significantly greater economic benefits compared to 

focusing solely on individual chronic diseases [124]. 

Consequently, the healthy longevity research and 

development sector is urged to evolve swiftly by 

embracing innovative approaches, such as gene and cell 

therapies, organ replacement, engineered cells, full cell 
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simulation, and reversible cryostasis. Moreover, the 

development of new tools to measure biology in  

ever greater detail and precision, such as single-cell 

proteomics, metabolomics, non-invasive blood chemistry 

monitoring and more, is essential for advancing our 

understanding and interventions in ageing. Overcoming 

challenges related to capital accessibility, quality control, 

and regulatory barriers is essential for progress. 

Furthermore, fostering community engagement and 

advocacy, and leveraging decentralized science and 

blockchain technology could spur research and 

innovation, paving the way for a new era of funding and 

knowledge exchange within the scientific community 

[125, 126]. 

 

The integration of artificial intelligence (AI), biomarkers, 

ageing biology, and longevity medicine stands as a 

cornerstone for extending human healthy lifespan. AI 

innovations offer deeper insights and enable personalised 

strategies in drug discovery and clinical trials, bridging 

technology and biology. The integration of traditional 

biomarkers with advanced deep clocks is steering the 

shift towards personalised medical interventions. New 

‘omics’ technologies coupled with novel AI analyses 

now enable the study of extended longevity mechanisms 

evolved in non-canonical model ageing extremists such 

as bats, whales and naked mole rats, uncovering which 

pathways are most relevant to humans. Collaboration 

across disciplines and borders, involving clinicians, 

biologists, data scientists, funders, policymakers and 

healthy longevity community, is crucial for the effective 

integration of scientific findings into practice (Figure 3).  

 

 
 

Figure 3. Integration of AI, biomarkers and clocks, 
geroscience, and longevity medicine in advancing human 
healthspan. 

This collective approach not only aims to deepen our 

comprehension of ageing but also to forge new paths for 

enhancing healthspan, thereby improving the quality of 

life in later years and reducing the financial strains of 

age-related conditions. 
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